Vol. 106

Latest Volume
All Volumes
All Issues
2022-09-13

A Modified Magnitude-Selective Affine Function-Based Behavioral Digital Predistortion for Power Amplifiers in MIMO Systems

By Haopu Shen, Cuiping Yu, Ke Tang, and Yuan'an Liu
Progress In Electromagnetics Research Letters, Vol. 106, 111-119, 2022
doi:10.2528/PIERL22060208

Abstract

In this paper, a modified magnitude-selective affine function-based behavioral model is proposed for the linearization of power amplifiers in multiple-input multiple-output (MIMO) systems. In this model, high-order polynomials in the crossover memory polynomial (COMPM) are replaced by magnitude-selective affine functions to compensate for the crosstalk and nonlinear distortion, leading to a highly efficient hardware implementation. The performance of the model is validated using two 3-carrier long-term evolution (LTE) signals of 20 MHz bandwidth. Experimental results show that the proposed model can achieve nearly the same adjacent channel power ratio (ACPR) and normalized mean square error (NMSE) as COMPM with about 70% reduction of hardware complexity.

Citation


Haopu Shen, Cuiping Yu, Ke Tang, and Yuan'an Liu, "A Modified Magnitude-Selective Affine Function-Based Behavioral Digital Predistortion for Power Amplifiers in MIMO Systems," Progress In Electromagnetics Research Letters, Vol. 106, 111-119, 2022.
doi:10.2528/PIERL22060208
http://test.jpier.org/PIERL/pier.php?paper=22060208

References


    1. Larsson, E. G., O. Edfors, F. Tufvesson, and T. L. Marzetta, "Massive MIMO for next generation wireless systems," IEEE Communications Magazine, Vol. 52, No. 2, 186-195, Feb. 2014.
    doi:10.1109/MCOM.2014.6736761

    2. Palaskas, Y., et al., "A 5-GHz 108-Mb/s 2 × 2 MIMO transceiver RFIC with fully integrated 20.5-dBm power P1 dB amplifiers in 90-nm CMOS," IEEE J. Solid-State Circuits, Vol. 41, No. 12, 2746-2756, Dec. 2006.
    doi:10.1109/JSSC.2006.884795

    3. Ding, L., et al., "A robust digital baseband predistorter constructed using memory polynomials," IEEE Transactions on Communications, Vol. 52, No. 1, 159-165, Jan. 2004.
    doi:10.1109/TCOMM.2003.822188

    4. Bassam, S. A., M. Helaoui, and F. M. Ghannouchi, "Crossover digital predistorter for the compensation of crosstalk and nonlinearity in MIMO transmitters," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 5, 1119-1128, May 2009.
    doi:10.1109/TMTT.2009.2017258

    5. Saffar, D., N. Boulejfen, F. M. Ghannouchi, A. Gharsallah, and M. Helaoui, "Behavioral modeling of MIMO nonlinear systems with multivariable polynomials," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 11, 2994-3003, Nov. 2011.
    doi:10.1109/TMTT.2011.2166977

    6. Abdelhafiz, A., L. Behjat, F. M. Ghannouchi, M. Helaoui, and O. Hammi, "A high-performance complexity reduced behavioral model and digital predistorter for MIMO systems with crosstalk," IEEE Transactions on Communications, Vol. 64, No. 5, 1996-2004, May 2016.
    doi:10.1109/TCOMM.2016.2545654

    7. Jaraut, P., M. Rawat, and F. M. Ghannouchi, "Curtailed digital predistortion model for crosstalk in MIMO transmitters," 2018 IEEE/MTT-S International Microwave Symposium --- IMS, 2018.

    8. Hausmair, K., P. N. Landin, U. Gustavsson, C. Fager, and T. Eriksson, "Digital predistortion for multi-antenna transmitters affected by antenna crosstalk," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 3, 1524-1535, Mar. 2018.
    doi:10.1109/TMTT.2017.2748948

    9. Li, Y., W. Cao, and A. Zhu, "Instantaneous sample indexed magnitude-selective affine function-based behavioral model for digital predistortion of RF power amplifiers," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 11, 5000-5010, Nov. 2018.

    10. Chen, L., W. Chen, F. M. Ghannouchi, and Z. Feng, "2-D magnitude-selective affine function-based digital predistortion for concurrent dual-band terminal power amplifiers," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 9, 4209-4222, Sept. 2021.
    doi:10.1109/TMTT.2021.3076184