Vol. 107

Latest Volume
All Volumes
All Issues
2022-11-11

Conjugated Split-Ring Resonators-Based Ultrathin, Polarization- and Angle-Insensitive Metasurface

By Evandro César Vilas Boas, Jorge Ricardo Mejia-Salazar, and Felipe Augusto Pereira De Figueiredo
Progress In Electromagnetics Research Letters, Vol. 107, 125-131, 2022
doi:10.2528/PIERL22082601

Abstract

We show a new polarization- and angle-insensitive ultrathin metasurface design using four conjugated hexagonal split-ring resonators (CHSRRs). The CHSRRs are made of copper and arranged in a λ/4 cell-size polyimide film substrate with a dielectric constant of 3.5 and thickness of 0.2 mm (λ/400 at 3.75 GHz). Each CHSRR aperture faces one corner of the square unit cell, thus forming a conjugated loop to achieve TE and TM polarization-insensitive behavior in a wide range of incident angles. Results demonstrated a -10 dB impedance bandwidth of 530 MHz (3.44 to 3.97 GHz) under normal incidence, partially covering the n77 band used for 5G applications.

Citation


Evandro César Vilas Boas, Jorge Ricardo Mejia-Salazar, and Felipe Augusto Pereira De Figueiredo, "Conjugated Split-Ring Resonators-Based Ultrathin, Polarization- and Angle-Insensitive Metasurface," Progress In Electromagnetics Research Letters, Vol. 107, 125-131, 2022.
doi:10.2528/PIERL22082601
http://test.jpier.org/PIERL/pier.php?paper=22082601

References


    1. Bukhari, S. S., J. Y. Vardaxoglou, and W. Whittow, "A metasurfaces review: Definitions and applications," Appl. Sci., Vol. 9, No. 13, 2727, 2019.
    doi:10.3390/app9132727

    2. Glybovski, S. B., S. A. Tretyako, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, "Metasurfaces: From microwaves to visible," Phy. Rep., No. 634, 1-72, 2016.
    doi:10.1016/j.physrep.2016.04.004

    3. Felbacq, D. and G. Boucitte, Metamaterials Modelling and Design, Pan Standford, 2017.
    doi:10.1201/9781315365008

    4. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, 2005.
    doi:10.1002/0471754323

    5. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. L. Smith, "Low-cost nonuniform metallic lattice for rectifying aperture near-field of electromagnetic bandgap resonator antennas," IEEE Trans. Antennas Propag., Vol. 68, No. 5, 3328-3335, 2020.
    doi:10.1109/TAP.2020.2969888

    6. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. L. Smith, "A high-gain wideband EBG resonator antenna for 60 GHz unlicenced frequency band," 12th European Conference on Antennas and Propagation (EuCAP 2018), 1-3, 2018.

    7. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. L. Smith, "All-metal wideband frequency-selective surface bandpass filter for TE and TM polarizations," IEEE Trans. Antennas Propag., Vol. 70, No. 4, 2790-2800, April 2022.
    doi:10.1109/TAP.2021.3138256

    8. Lalbakhsh, A., M. U. Afzal, T. Hayat, K. P. Esselle, and K. Mandal, "All-metal wideband metasurface for near-field transformation of medium-to-high gain electromagnetic sources," Sci. Rep., Vol. 11, Article number: 9421, 2021.
    doi:10.1038/s41598-021-88547-3

    9. He, Q., S. Sun, and L. Zhou, "Tunable/reconfigurable metasurfaces: Physics and applications," Research, Vol. 2019, Article ID 1849272, 2019.

    10. Esfandiyari, M., A. Lalbakhsh, S. Jarchi, M. G. Miab, H. N. Mahtaj, and R. B. V. B. Simorangkir, "Tunable terahertz filter/antenna-sensor using graphene-based metamaterials," Materials & Design, Vol. 220, 110855, 2022.
    doi:10.1016/j.matdes.2022.110855

    11. Das, P., K. Mandal, and A. Lalbakhsh, "Beam-steering of microstrip antenna using single-layer FSS based phase-shifting surface," Int. J. RF. Microw. C. E., Vol. 32, No. 3, 23033, 2022.

    12. Das, P., K. Mandal, and A. Lalbakhsh, "Single-layer polarization-insensitive frequency selective surface for beam reconfigurability of monopole antennas," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 1, 86-102, 2020.
    doi:10.1080/09205071.2019.1688693

    13. Paul, G. S., K. Mandal, and A. Lalbakhsh, "Single-layer ultra-wide stop-band frequency selective surface using interconnected square rings," AEU --- Int. J. Electron. Commun., Vol. 132, 153630, 2020.

    14. Markovich, H., D. Filonov, I. Shishkin, and P. Ginzburg, "Bifocal fresnel lens based on the polarization-sensitive metasurface," IEEE Trans. Antennas Propag., Vol. 66, No. 5, 2650-2654, 2018.
    doi:10.1109/TAP.2018.2811717

    15. Zhao, M., S. Zhu, H. Huang, D. Hu, X. Chen, J. Chen, and A. Zhang, "Frequency-polarization sensitive metasurface antenna for coincidence imaging," IEEE Antennas Wirel. Propag. Lett., Vol. 20, No. 7, 1274-1278, 2021.
    doi:10.1109/LAWP.2021.3077556

    16. Peng, C., K. Ou, G. Li, Z. Zhao, X. Li, C. Liu, X. Li, X. Chen, and W. Lu, "Tunable and polarization-sensitive perfect absorber with a phase-gradient heterojunction metasurface in the mid-infrared," Opt. Express, Vol. 29, No. 9, 12893-12902, 2021.
    doi:10.1364/OE.422519

    17. Yu, F., G. Q. He, X. X. Yang, J. Du, and S. Gao, "Polarization-insensitive metasurface for harvesting electromagnetic energy with high efficiency and frequency stability over wide range of incidence angles," App. Sci., Vol. 10, No. 22, 8047, 2020.
    doi:10.3390/app10228047

    18. Tirkey, M. M. and N. Gupta, "A novel ultrathin checkerboard inspired ultrawideband metasurface absorber," IEEE Trans. Electromagn. Compat., Vol. 64, No. 1, 66-74, 2021.
    doi:10.1109/TEMC.2021.3091767

    19. Shukoor, M. A., S. Dey, and S. K. Koul, "A simple polarization-insensitive and wide angular stable circular ring based undeca-band absorber for EMI/EMC applications," IEEE Trans. Electromagn. Compat., Vol. 63, No. 4, 1025-1034, 2021.
    doi:10.1109/TEMC.2021.3075730

    20. Xu, H. X., S. Wang, C. Wang, M. Wang, Y. Wang, and Q. Peng, "Polarization-insensitive metalens and its applications to reflectarrays with polarization diversity," IEEE Trans. Antennas Propag., Vol. 70, No. 3, 1895-1905, 2021.
    doi:10.1109/TAP.2021.3112553

    21. Hesmer, F., E. Tatartschuk, O. Zhuromskyy, A. A. Radkovskaya, M. Shamonin, T. Hao, C. J. Stevens, G. Faulkner, D. J. Edwards, and E. Shamonina, "Coupling mechanisms for split ring resonators: Theory and experiment," Phys. Status Solidi B, Vol. 244, No. 4, 1170-1175, 2007.
    doi:10.1002/pssb.200674501

    22. Jaksic, Z., S. Vukovic, J. Matovic, and D.Tanaslovic, "Negative refractive index metasurfaces for enhanced biosensing," Materials, Vol. 4, No. 1, 1-36, 2010.
    doi:10.3390/ma4010001

    23. Penciu, R. S., K. Aydin, M. Kafesaki, Th. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, "Multi-gap individual and coupled split-ring resonator structures," Opt. Express, Vol. 16, No. 22, 18131-18144, 2018.
    doi:10.1364/OE.16.018131

    24. Wahidi, M. S., M. I. Khan, F. A. Tahir, and H. Rmili, "Multifunctional single layer metasurface based on hexagonal split ring resonator," IEEE Access, Vol. 8, 28054-28063, 2020.

    25. Zhong, H. T., X. X. Yang, C. Tan, and K. Yu, "Triple-band polarization-insensitive and wide-angle metamaterial array for electromagnetic energy harvesting," Appl. Phys. Lett., Vol. 109, No. 25, 253904, 2016.
    doi:10.1063/1.4973282

    26. Miyamaru, F., S. Kubota, T. Nakanishi, S. Kawashima, N. Sato, M. Kitano, and M. W. Takeda, "Transmission properties of double-gap asymmetric split ring resonators in terahertz region," Appl. Phys. Lett., Vol. 101, No. 5, 051112, 2012.
    doi:10.1063/1.4739945

    27. Assimonis, S. D. and V. Fusco, "Polarization insensitive, wide-angle, ultra-wideband, flexible, resistively loaded, electromagnetic metamaterial absorber using conventional iinkjet-printing technology," Sci. Rep., Vol. 9, No. 1, 1-15, 2019.
    doi:10.1038/s41598-019-48761-6

    28. Bhope, V. and A. Harish, "A novel bandstop frequency selective surface using coupled split ring resonators," 2019 IEEE Asia-Pacific Microwave Conference (APMC), 1745-1747, IEEE, 2019.
    doi:10.1109/APMC46564.2019.9038271

    29. Mol, V. L. and C. Aanandan, "An ultrathin microwave metamaterial absorber with enhanced bandwidth and angular stability," J. Phys. Commun., Vol. 1, No. 1, 015003, 2017.
    doi:10.1088/2399-6528/aa80c1

    30. Ghaneizadeh, A., M. Joodaki, J. Borcsok, A. Golmakani, and K. Mafinezhad, "Analysis, design, and implementation of a new extremely ultrathin 2-D-isotropic flexible energy harvester using symmetric patch FSS," IEEE Trans. Microw. Theory Techn., Vol. 68, No. 6, 2108-2115, 2020.
    doi:10.1109/TMTT.2020.2982386

    31. Jilani, S. F., O. P. Falade, T. Wildsmith, P. Reip, and A. Alomainy, "A 60-GHz ultra-thin and flexible metasurface for frequency-selective wireless applications," App. Sci., Vol. 9, No. 5, 945, 2019.
    doi:10.3390/app9050945

    32. Yong, W. Y., S. K. A. Rahim, M. Himdi, F. C. Seman, D. L. Suong, M. R. Ramli, and H. A. Elmobarak, "Flexible convoluted ring shaped FSS for X-band screening application," IEEE Access, Vol. 6, 11657-11665, 2018.
    doi:10.1109/ACCESS.2018.2804091