Vol. 107

Latest Volume
All Volumes
All Issues
2022-10-28

Broadband Proximity Coupled Millimeter-Wave Microstrip Array Antenna for Automotive Radar Applications

By Shuo Wang, Dan Zhang, Zhendong Ding, Huiwen Chen, and Shenxiang Yang
Progress In Electromagnetics Research Letters, Vol. 107, 93-101, 2022
doi:10.2528/PIERL22090605

Abstract

In this letter, a broadband proximity coupled millimeter-wave microstrip array antenna is presented for automotive radar applications. The antenna array consists of a microstrip line and a series of trapezoidal radiating elements that are periodically arranged on both sides of the microstrip line, at intervals of about half the guided-wavelength. The introduction of the trapezoidal radiating patch enhances the excitation coupling while suppressing out-of-band frequencies, and it has a wider impedance bandwidth than the rectangular patch. In the design of proposed antenna, the normalized resistance of the trapezoidal radiating element is controlled by adjusting the gap with the microstrip line, so that a low-sidelobe level (SLL) can be achieved. Taking the 77-81 GHz frequency band allocated to automotive radar applications as an example, a 1×16 linear array is designed and fabricated. The measured SLL is better than -20 dB. The measured gain of 1×16 array is higher than 15 dBi over the operating frequency range of 77-81 GHz. The 1×16 linear array can achieve an impedance bandwidth of 7.6% (75.6-81.6 GHz).

Citation


Shuo Wang, Dan Zhang, Zhendong Ding, Huiwen Chen, and Shenxiang Yang, "Broadband Proximity Coupled Millimeter-Wave Microstrip Array Antenna for Automotive Radar Applications," Progress In Electromagnetics Research Letters, Vol. 107, 93-101, 2022.
doi:10.2528/PIERL22090605
http://test.jpier.org/PIERL/pier.php?paper=22090605

References


    1. Schram, R., A. Williams, and M. van Ratingen, "Implementation of Autonomous Emergency Braking (AEB), the next step in euro NCAP's safety assessment," 2013 Proc. of the Int. Technical Conf. Onthe Enhanced Safety of Vehicles (ESV), Seoul, Republic of Korea, May 27-30, 2013.

    2. Weiss, M., "Microstrip antennas for millimeter waves," IEEE Trans. Antennas Propag., Vol. 29, No. 1, 171-174, January, 1981.
    doi:10.1109/TAP.1981.1142547

    3. Xu, J., W. Hong, H. Zhang, G. Wang, Y. Yu, and Z. H. Jiang, "An array antenna for both long- and medium-range 77 GHz automotive radar applications," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 7207-7216, December 2017.
    doi:10.1109/TAP.2017.2761549

    4. Yu, Y., W. Hong, Z. H. Jiang, and H. Zhang, "E-band low-profile, wideband 45 linearly polarized slot-loaded patch and its array for millimeter-wave communications," IEEE Trans. Antennas Propag., Vol. 66, No. 8, 4364-4369, August 2018.
    doi:10.1109/TAP.2018.2840825

    5. Li, M. and K. Luk, "Low-cost wideband microstrip antenna array for 60-GHz applications," IEEE Trans. Antennas Propag., Vol. 62, No. 6, 3012-3018, June 2014.
    doi:10.1109/TAP.2014.2311994

    6. Guo, Y. Q., Y. M. Pan, and S. Y. Zheng, "Design of series-fed, single-layer, and wideband millimeter-wave microstrip arrays," IEEE Trans. Antennas Propag., Vol. 68, No. 10, 7017-7026, October 2020.
    doi:10.1109/TAP.2020.3008668

    7. Xu, H., J. Zhou, K. Zhou, Q. Wu, Z. Yu, and W. Hong, "Planar wideband circularly polarized cavity-backed stacked patch antenna array for millimeter-wave applications," IEEE Trans. Antennas Propag., Vol. 66, No. 10, 5170-5179, October 2018.
    doi:10.1109/TAP.2018.2862345

    8. Yuan, T., N. Yuan, and L. Li, "A novel series-fed taper antenna array design," IEEE Antennas Wireless Propag. Lett., Vol. 7, 362-365, 2008.
    doi:10.1109/LAWP.2008.928487

    9. Khalili, H., K. Mohammadpour-Aghdam, S. Alamdar, and M. Mohammad-Taheri, "Low-cost series-fed microstrip antenna arrays with extremely low sidelobe levels," IEEE Trans. Antennas Propag., Vol. 66, No. 9, 4606-4612, September 2018.
    doi:10.1109/TAP.2018.2845442

    10. Kang, Y., E. Noh, and K. Kim, "Design of traveling-wave series-fed microstrip array with a low sidelobe level," IEEE Antennas Wireless Propag. Lett., Vol. 19, No. 8, 1395-1399, August 2020.
    doi:10.1109/LAWP.2020.2989916

    11. Qian, J., H. Zhu, M. Tang, and J. Mao, "A 24 GHz microstrip comb array antenna with high sidelobe suppression for radar sensor," IEEE Antennas Wireless Propag. Lett., Vol. 20, No. 7, 1220-1224, July 2021.
    doi:10.1109/LAWP.2021.3075887

    12. Diawuo, H. A. and Y.-B. Jung, "Broadband proximity-coupled microstrip planar antenna array for 5G cellular applications," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 7, 1286-1290, July 2018.
    doi:10.1109/LAWP.2018.2842242

    13. Dzagbletey, P. A. and Y.-B. Jung, "Stacked microstrip linear array for millimeter-wave 5G baseband communication," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 5, 780-783, May 2018.
    doi:10.1109/LAWP.2018.2816258

    14. Lee, J.-H., J. M. Lee, K. C. Hwang, D.-W. Seo, D. Shin, and C. Lee, "Capacitively coupled microstrip comb-line array antennas for millimeter-wave applications," IEEE Antennas Wireless Propag. Lett., Vol. 19, No. 8, 1336-1339, August 2020.
    doi:10.1109/LAWP.2020.3001945

    15. Liu, D., H. Nakano, X. Qing, and T. Zwick, Handbook of Antenna Technologies, 1389-1413, Springer, Gateway East, Singapore, 2016.

    16. Seo, K., "Planar microstrip-to-waveguide transition in millimeter-wave band," Advancement in Microstrip Antennas with Recent Applications, Ch. 11, 249-277, A. Kishk, Ed., InTech, Rijeka, Croatia, 2013.