Vol. 108

Latest Volume
All Volumes
All Issues
2022-12-25

A Wideband Dual-Cavity-Backed Polarization Reconfigurable Antenna Based on Liquid Metal Switches

By Yuwei Zhang, Shu Lin, Libo Wang, and Qun Ding
Progress In Electromagnetics Research Letters, Vol. 108, 75-83, 2023
doi:10.2528/PIERL22110302

Abstract

This letter presents a wideband polarization reconfigurable antenna based on liquid metal (LM) switches. It consists of single-fed crossed bowtie dipoles, a parasitic element grounded via a metallic post, a dual-cavity-backed reflector and liquid metal switches. The two arms of one dipole are loaded with two symmetrical identical slots, and on top of the slots, two sets of fixed-length movable liquid metal columns filled in polytetrafluoroethylene (PTFE) tubes are attached as switches. The altering between linear polarization (LP) and circular polarization (CP) can be achieved by changing the positions of the liquid metal switches. The dual-cavity structure is applied to obtain unidirectional radiation and enhance the circularly polarized performance. A prototype with overall size of 127 × 127 × 57 mm3 is designed and fabricated. The measured results indicate that the impedance bandwidth (IBM) of the antenna is from 1.06 to 2.46 GHz (79.54%) and the axial ratio bandwidth (ARBW) is from 1.39 to 1.91 GHz (31.52%) for CP state. In addition, the IBW for LP state is from 1.06 to 2.30 GHz (73.81%). Moreover, the peak gains can reach 7.73 dBic in CP state and 9.21 dBi in LP state.

Citation


Yuwei Zhang, Shu Lin, Libo Wang, and Qun Ding, "A Wideband Dual-Cavity-Backed Polarization Reconfigurable Antenna Based on Liquid Metal Switches," Progress In Electromagnetics Research Letters, Vol. 108, 75-83, 2023.
doi:10.2528/PIERL22110302
http://test.jpier.org/PIERL/pier.php?paper=22110302

References


    1. Ye, Q. C., J. L. Li, and Y. M. Zhang, "A circular polarization-reconfigurable antenna with enhanced axial ratio bandwidth," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 6, 2148-1252, 2022.
    doi:10.1109/LAWP.2022.3162720

    2. Tsai, J. F. and J. S. Row, "Reconfigurable square-ring microstrip antenna," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 5, 2857-2860, 2013.
    doi:10.1109/TAP.2013.2244554

    3. Kovitz, J. M., H. Rajagopalan, and Y. Rahmat-Samii, "Design and implementation of broadband MEMS RHCP/LHCP reconfigurable arrays using rotated E-shaped patch elements," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 6, 2497-2507, 2015.
    doi:10.1109/TAP.2015.2417892

    4. Zhang, Y. W., L. Shu, Z. Q. Yang, B. Q. Li, J. X. Cui, and J. L. Jiao, "A pattern- and frequency-reconfigurable antenna using liquid metal," Microwave and Optical Technology Letters, Vol. 63, 1499-1506, 2021.
    doi:10.1002/mop.32767

    5. Bai, X., S. Lv, and Y. J. Zhu, "A dual-polarized, direction diagram reconfigurable, liquid metal antenna," Progress In Electromagnetics Research Letters, Vol. 106, 57-66, 2022.
    doi:10.2528/PIERL22061502

    6. Song, L., W. Gao, C. Chui, and Y. Rahmat-Samii, "Wideband frequency reconfigurable patch antenna with switchable slots based on liquid metal and 3-D printed microfluidics," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 5, 2886-2895, 2019.
    doi:10.1109/TAP.2019.2902651

    7. Alqurashi, K., et al., "Liquid metal bandwidth reconfigurable antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 1, 218-222, 2020.
    doi:10.1109/LAWP.2019.2959879

    8. Rodrigo, D., L. Jofre, and B. Cetiner, "Circular beam-steering reconfigurable antenna with liquid metal parasitics," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 4, 1796-1802, 2012.
    doi:10.1109/TAP.2012.2186235

    9. Chen, Z., H. Wong, and J. Kelly, "A polarization-reconfigurable glass dielectric resonator antenna using liquid metal," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 5, 3427-3432, 2019.
    doi:10.1109/TAP.2019.2901132

    10. Zhang, G. B., et al., "A liquid-metal polarization-pattern-reconfigurable dipole antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 1, 50-53, 2018.
    doi:10.1109/LAWP.2017.2773076

    11. Xu, C., Y. Wang, J. H. Wu, and Z. P. Wang, "Parasitic circular patch antenna with continuously tunable linear polarization using liquid metal alloy," Microwave and Optical Technology Letters, Vol. 3, 1-7, 2018.

    12. Wang, C., J. C. Yeo, H. Chu, C. T. Lim, and Y. X. Guo, "Design of a reconfigurable patch antenna using the movement of liquid metal," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 6, 974-977, 2018.
    doi:10.1109/LAWP.2018.2827404

    13. Liu, Y., Q. Wang, Y. T. Jia, and P. S. Zhu, "A frequency- and polarization-reconfigurable slot antenna using liquid metal," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 11, 7630-7635, 2020.
    doi:10.1109/TAP.2020.2993110

    14. Song, L. N., W. R. Gao, and Y. Rahmat-Samii, "3-D printed microfluidics channelizing liquid metal for multipolarization reconfigurable extended E-shaped patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 10, 6867-6878, 2020.
    doi:10.1109/TAP.2020.2993079

    15. Ehrenspeck, H. W., "A new class of medium-size high-efficiency reflector antennas," IEEE Transactions on Antennas and Propagation, Vol. 22, No. 2, 329-332, 1974.
    doi:10.1109/TAP.1974.1140771