Vol. 108

Latest Volume
All Volumes
All Issues
2022-12-11

Light Trapping for Absorption Control in Perovskite-Based Photovoltaic Solar Cells

By Maroua Chahmi, Mounir Bouras, Moufdi Hadjab, and Mohammad Alam Saeed
Progress In Electromagnetics Research Letters, Vol. 108, 41-48, 2023
doi:10.2528/PIERL22110505

Abstract

Nanostructure based perovskite solar cell with high performance is the emphasis of study in current work keeping in view the improvement in cell efficiency. In the first part of the study, a plane-layered solar cell is studied by adding a 1D photonic crystal at the bottom of the cell in order to facilitate the photon rotation process. However, in the second part of the study, it is observed that addition of grating enhances the light absorption due to photons trapping. Following that, the light absorption of three different structures is compared. The observations reveal that short-circuit current density (Jsc) is found to be -39.93 mA/cm2, which is 87.29% higher than that for a planar structure exhibiting the Jsc value as -21.32 mA/cm2. Ultimately, the efficiencies of these perovskite solar cells based on nanostructures are observed to be significant as well. For the proposed solar cell structure, an 87.24% improvement in the power conversion efficiency (PCE) is observed i.e., from 14.03% for the planar structure to 26.27%.

Citation


Maroua Chahmi, Mounir Bouras, Moufdi Hadjab, and Mohammad Alam Saeed, "Light Trapping for Absorption Control in Perovskite-Based Photovoltaic Solar Cells," Progress In Electromagnetics Research Letters, Vol. 108, 41-48, 2023.
doi:10.2528/PIERL22110505
http://test.jpier.org/PIERL/pier.php?paper=22110505

References


    1. Service, R. F., "Perovskite solar cells keep on surging," Science, Vol. 344, 458-458, 2014.
    doi:10.1126/science.344.6183.458

    2. McGehee, M. D., "Fast-track solar cells," Nature, Vol. 501, 323-325, 2013.
    doi:10.1038/nature12557

    3. Kojima, A., K. Teshima, Y. Shirai, and T. O. Miyasaka, "Halide perovskites as visible-light sensitizers for photovoltaic cells," J. Am. Chem. Soc., Vol. 131, 6050-6051, 2009.
    doi:10.1021/ja809598r

    4. Nie, W., et al., "High-efficiency solution-processed perovskite solar cells with millimeter-scale grains," Science, Vol. 347, 522-525, 2015.
    doi:10.1126/science.aaa0472

    5. Rühle, S., "Tabulated values of the Shockley-Queisser limit for single junction solar cells," Sol. Energy, 2016.

    6. Zhou, H., et al., "Interface engineering of highly efficient perovskite solar cells," Science, Vol. 345, 542-546, 2014.
    doi:10.1126/science.1254050

    7. Green, M. A., K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, "Solar cell efficiency tables (version 45)," Prog. Photovoltaics Res. Appl., Vol. 23, 1-9, 2015.
    doi:10.1002/pip.2573

    8. Malinkiewicz, O., et al., "Perovskite solar cells employing organic charge-transport layers," Nature Photon., Vol. 8, 128-132, 2014.
    doi:10.1038/nphoton.2013.341

    9. Docampo, P., J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, "Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates," Nature Commun., Vol. 4, 2761, 2013.
    doi:10.1038/ncomms3761

    10. Shah, A. V., et al., "Thin-film solar cell technology," Progr. Photovolt. Res. Appl., Vol. 12, 113-142, 2004.
    doi:10.1002/pip.533

    11. Yu, Z., A. Raman, and S. Fan, PNAS, Vol. 107, No. 41, 17491-17496, 2010, DOI: 10.1073/pnas.1008296107.

    12. Tang, Z., W. Tress, and O. Inganäs, Mater Today, Vol. 17, No. 8, 389-396, 2014, DOI: 10.1016/j.mattod.2014.05.008.

    13. Nelson, J., The Physics of Solar Cell, Imperial College Press, United Kingdom, London, 2008, DOI: 10.1142/p276.

    14. Sathya, P. and R. Natarajan, Int. J. Energy Res., Vol. 41, 1211-1222, DOI: 10.1002/er.3708.

    15. Shuba, M. V., et al., J. Opt. Soc. Am. A, Vol. 32, 1222-1230, 2015, DOI: 10.1364/JOSAA.32.001222.
    doi:10.1364/JOSAA.32.001222

    16. Gabriel, C., Optics And Optoelectronics, Vol. 19, 2021, DOI:10.15598/aeee.v19i2.4140.

    17. Bhatnagar, A. and V. Janyani, IEEE International Conference on Computer, Communications and Electronics, 516-520, Jaipur, 2017.

    18. Scholtz, L., L. Ladanyi, and J. Mullerova, Applied Physics, Vol. 12, 2014, DOI: 10.15598/aeee.v12i6.1078.

    19. Abdelraouf, O. A. and N. K. Allam, Sol. Energy, Vol. 137, 364-370, 2016, https://doi.org/10.1016/j.solener.2016.08.039.
    doi:10.1016/j.solener.2016.08.039

    20. Abdelraouf, O. A., A. Shaker, and N. K. Allam, Opt. Mater., Vol. 86, 311-317, 2018, https://doi.org/10.1016/j.optmat.2018.10.028.
    doi:10.1016/j.optmat.2018.10.028

    21. Bendib, T., H. Bencherif, and M. A. Abdi, "Combined optical-electrical modeling of perovskite solar cell with an optimized design," Optical Materials, Vol. 109, 110259, 2020, doi.org/10.1016/j.optmat.2020.110259.
    doi:10.1016/j.optmat.2020.110259

    22. Hajjiah, A., H. Badran, and I. Kandas, Energies, Vol. 13, 3854, 2020, doi:10.3390/en13153854.
    doi:10.3390/en13153854

    23. Bhatnagar, A. and V. Janyani, Advanced Materials Letters, Vol. 9, No. 10, 721-726, 2018, DOI: 10.5185/amlett.2018.2108.