Vol. 108

Latest Volume
All Volumes
All Issues
2023-01-06

SAR Reduction in Human Head Phantom Using Nanomaterial MIMO Antenna

By Jemima Priyadarshini Stephen and Duraisamy Jude Hemanth
Progress In Electromagnetics Research Letters, Vol. 108, 103-112, 2023
doi:10.2528/PIERL22110905

Abstract

This work aims for nonionizing radiation assessment to reduce Specific Absorption Rate (SAR) in the IEEE SAM phantom using MIMO antenna. The traditional copper material MIMO is designed with mode characteristics and validated for 2.4 GHz in this experiment. The MIMO antenna, when placed near SAM phantom and SAR, is estimated. Copper-based antennas are replaced by nanomaterial-based antennas, such as graphene, multi-walled carbon nanotube (MWCNT), and single walled carbon nanotube (SWCNT), to study SAR behavior. SAR is reduced using Nanomaterial based antenna in which SWCNT significantly reduces SAR up to 66 percent using Altair's Feldberechnung für Körper mit beliebiger Oberfläche (FEKO).

Citation


Jemima Priyadarshini Stephen and Duraisamy Jude Hemanth, "SAR Reduction in Human Head Phantom Using Nanomaterial MIMO Antenna," Progress In Electromagnetics Research Letters, Vol. 108, 103-112, 2023.
doi:10.2528/PIERL22110905
http://test.jpier.org/PIERL/pier.php?paper=22110905

References


    1. Gholb, Y. El. and N. El Amrani El Idrissi, "5G Mobile Antennas: MIMO Implementation," 2019 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), 1-6, 2019, doi: 10.1109/WITS.2019.8723661.

    2. Hardell, L., "World Health Organization, radiofrequency radiation and health --- A hard nut to crack (Review)," International journal of oncology, Vol. 51, No. 2, 405-413, 2017, doi:10.3892/IJO.2017.4046.
    doi:10.3892/ijo.2017.4046

    3. Zhang, J., A. Sumich, and G. Y. Wang, "Acute effects of radiofrequency electromagnetic field emitted by mobile phone on brain function," Bioelectromagnetics, Vol. 38, No. 5, 329-338, 2017, doi.org/10.1002/BEM.22052.
    doi:10.1002/bem.22052

    4. Szász, O., G. P. Szigeti, and A. Szász, "Connections between the specific absorption rate and the local temperature," Open Journal of Biophysics, Vol. 6, 53-74, doi: 10.4236/OJBIPHY.2016.63007.

    5. Priyadarshini, J. S. and D. J. Hemanth, "Investigation and reduction methods of specific absorption rate for biomedical applications: A survey," Int. J. RF Microw. Comput. Aided Eng., Vol. 28, 21211, 2018, doi.org/10.1002/MMCE.21211.
    doi:10.1002/mmce.21211

    6. Khan, M. S., A.-D. Capobianco, S. M. Asif, A. Iftikhar, B. D. Braaten, and R. M. Shubair, "A properties comparison between copper and graphene-based UWB MIMO planar antennas," IEEE International Symposium on Antennas and Propagation (APSURSI ), 1767-1768, 2016, doi: 10.1109/APS.2016.7696590.

    7. Gatte, M. T., P. J. Soh, H. A. Rahim, R. B. Ahmad, and F. Malek, "The performance improvement of THz antenna via modeling and characterization of doped graphene," Progress In Electromagnetics Research M, Vol. 49, 21-31, 2016, doi:10.2528/PIERM16050405.
    doi:10.2528/PIERM16050405

    8. Zhou, Y., Y. Bayram, F. Du, L. Dai, and J. L. Volakis, "Polymer-carbon nanotube sheets for conformal load bearing antennas," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2169-2175, Jul. 2010, doi: 10.1109/TAP.2010.2048852.
    doi:10.1109/TAP.2010.2048852

    9. Arumugam, S., S. Manoharan, S. K. Palaniswamy, and S. Kumar, "Design and performance analysis of a compact quad-element UWB MIMO antenna for automotive communications," Electronics, Vol. 10, No. 18, 2184, 2021, doi.org/10.3390/electronics10182184.
    doi:10.3390/electronics10182184

    10. Lee, A., S. Hong, J. Kwon, and H. Choi, "SAR comparison of SAM phantom and anatomical head models for a typical bar-type phone model," IEEE Transactions on Electromagnetic Compatibility, Vol. 57, No. 5, 1281-1284, 2015, doi: 10.1109/TEMC.2015.2433314.
    doi:10.1109/TEMC.2015.2433314

    11. Hyde, T. H., B. S. M. Ali, and W. Sun, "Interpretation of small ring creep test data," The Journal of Strain Analysis for Engineering Design, Vol. 48, No. 4, 269-278, 2013, doi: 10.1177/0309324712468820.
    doi:10.1177/0309324712468820

    12. Clarke, S. and U. Jakobus, "Dielectric material modeling in the MoM-based code FEKO," IEEE Antennas and Propagation Magazine, Vol. 47, No. 5, 140-147, 2005, doi: 10.1109/MAP.2005.1599186.
    doi:10.1109/MAP.2005.1599186

    13. Chaudhary, S., A. Kumar, and B. M. Singh, "Use of graphene as a patch material in comparison to the copper and other carbon nanomaterials," IJETCAS, 12-38, 2013.

    14. Mohanty, A. and B. R. Behera, "Characteristics mode analysis: A review of its concepts, recent trends, state-of-the-art developments and its interpretation with a fractal UWB MIMO antenna," Progress In Electromagnetics Research B, Vol. 92, 19-45, 2021, doi:10.2528/PIERB21020506.
    doi:10.2528/PIERB21020506

    15. Phonkitiphan, P., R. Kaewon, K. Pancharoen, P. Silapan, and O. Watcharakitchakorn, "Design of graphene-based annular ring microstrip antenna using short-pin technique for dual band applications," IJEETC, 2020.

    16., , https://www.altair.com/feko.

    17. Jemima Priyadarshini, S. and D. Jude Hemanth, "Investigation of nanomaterial dipoles for SAR reduction in human head," Frequenz, Vol. 73, No. 5-6, 189-201, 2019, doi:10.1515/freq-2018-0220.
    doi:10.1515/freq-2018-0220