In this paper, a high front-to-back ratio (FTBR), broad bandwidth planar printing structure, and electromagnetic dipole complementary antenna that generates end-fire radiation pattern is investigated. The antenna consists of a segmented loop, planar electric dipole, and microstrip coupling feed structure, which are printed on the top and bottom surfaces of a dielectric substrate. The segmented loop is equivalent to a magnetic dipole. A high front-to-back ratio is achieved by combining the electric dipole and equivalent magnetic dipole with the same radiation intensity and antiphase. The proposed antenna is fabricated and measured. The measured results show that the proposed antenna achieves an impedance bandwidth of 48.05% (1.66 GHz-2.71 GHz). The largest gain can get to 3.89 dBi, and the maximum front-to-back ratio is 25.4 dB in the frequency band. The measured results are well consistent with simulated ones.
2. Lin, W. and R. W. Ziolkowski, "Electrically small, low-profile, huygens circularly polarized antenna," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 2, 636-643, 2017.
doi:10.1109/TAP.2017.2784432
3. Podilchak, S. K., A. P. Freundrofer, and Y. M. M. Antar, "Planar antenna for directive beam steering at end-fire using an array of surface-wave launchers," Electronic Letter, Vol. 45, No. 9, 444-445, 2009.
doi:10.1049/el.2009.3455
4. Juan, Y., W. Q. Che, Z. N. Chen, and W. Yang, "A longitudinally compact Yagi-Uda antenna with a parasitic interdigital strip," IEEE Antennas Wireless Propagation Letter, Vol. 16, 2618-2621, 2017.
doi:10.1109/LAWP.2017.2736245
5. Yeo, J. and J. I. Lee, "Bandwidth enhancement of double-dipole quasi-yagi antenna using stepped slot-line structure," IEEE Antennas Wireless Propagation Letter, Vol. 15, 694-697, 2016.
doi:10.1109/LAWP.2015.2469677
6. Kaneda, N., et al., "A broadband planar quasi-Yagi antenna," IEEE Transactions on Antennas Propagation, Vol. 50, No. 8, 1158-1160, 2002.
doi:10.1109/TAP.2002.801299
7. Li, Y., et al., "A non-balancing end-fire microstrip dipole with periodic-offset DSPSL substrate," IEEE Transactions on Antennas Propagation, Vol. 65, No. 5, 2661-2665, 2017.
doi:10.1109/TAP.2017.2682227
8. Boyuan, M., et al., "Unidirectional dielectric resonator antennas employing electric and magnetic dipole moments," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 10, 6918-6923, 2021.
doi:10.1109/TAP.2021.3069556
9. Guo, L., K. W. Leung, and Y. M. Pan, "Compact unidirectional ringdielectric resonator antennas with lateral radiation," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 12, 5334-5342, 2015.
doi:10.1109/TAP.2015.2493579
10. Ouyang, J., Y. M. Pan, and S. Y. Zheng, "Center-fed unilateral and pattern reconfigurable planar antennas with slotted ground plane," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 10, 5139-5149, 2018.
doi:10.1109/TAP.2018.2860046
11. Zeng, J. and K. M. Luk, "Wideband millimeter-wave end-fire magnetoelectric dipole antenna with microstrip-line feed," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 4, 2658-2665, 2020.
doi:10.1109/TAP.2019.2957089
12. Tang, M. C., B. Zhou, and R. W. Ziolkowski, "Low-profile, electrically small, huygens source antenna with pattern-reconfigurability that covers the entire azimuthal plane," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 99, 1063-1072, 2017.
doi:10.1109/TAP.2016.2647712
13. Sun, K., et al., "Improved HM-SIW cavity-cascaded array with high front-to-back ratio based on complementary element," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 9, 6821-6825, 2020.
doi:10.1109/TAP.2020.2982501
14. Yang, H. Q., et al., "Envisioning an end-fire circularly polarized antenna: Presenting a planar antenna with a wide beamwidth and enhanced front-to-back ratio," IEEE Antennas Propagation Magazine, Vol. 60, No. 4, 70-79, 2018.
doi:10.1109/MAP.2018.2839964
15. Wu, Z., M. C. Tang, M. Li, and R. W. Ziolkowski, "Ultralow-profile, electrically small, pattern-reconfigurable metamaterial inspired huygens dipole antenna," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 1238-1248, 2020.
doi:10.1109/TAP.2019.2925280
16. Hu, P. F., Y. M. Pan, S. Zheng, and B. J. Hu, "The design of miniaturized planar endfire antenna with enhanced front-to-back ratio," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 10, 7190-7195, 2020.
doi:10.1109/TAP.2020.2977816
17. Wang, L., Y.-C. Jiao, and Z. Weng, "Novel dual-band circularly polarized planar endfire antenna with enhanced front-to-back ratios," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 2, 969-976, 2022.
doi:10.1109/TAP.2021.3111160
18. Yin, J. Y. and L. Zhang, "Design of a dual-polarized magnetoelectric dipole antenna with gain improvement at low elevation angle for a base station," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 5, 756-760, 2020.
doi:10.1109/LAWP.2020.2979343
19. Best, S. R., "Progress in the design and realization of an electrically small Huygens source," 2010 International Workshop on Antenna Technology (iWAT), 2010.
20. Alitalo, P., et al., "A linearly polarized huygens source formed by two omega particles," Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), 2302-2305, 2011.
21. Chlavin, A., "A new antenna feed having equal E- and H-plane patterns," Transactions of the IRE Professional Group on Antennas and Propagation, Vol. 2, No. 3, 113-119, 1954.
doi:10.1109/T-AP.1954.27983
22. Chan, P. W., H. Wong, and E. K. N. Yung, "Unidirectional antenna composed of dipole and loop," Electronics Letters, Vol. 43, No. 22, 1176-1178, 2007.
doi:10.1049/el:20071980
23. Li, Z. R., et al., "A novel wideband end-fire conformal antenna array mounted on a dielectric cone," Applied Computational Electromagnetics Society Journal, Vol. 31, No. 8, 933-942, 2016.
24. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, New York, 2005.