Vol. 112

Latest Volume
All Volumes
All Issues
2023-09-21

Metamaterial-Inspired Notebook Antenna with 2.4/5/6 GHz Wi-Fi 7 Operation

By Saou-Wen Su and Muhammad Idrees Magray
Progress In Electromagnetics Research Letters, Vol. 112, 87-95, 2023
doi:10.2528/PIERL23061204

Abstract

A metamaterial-inspired antenna is proposed that utilizes an artificial mu-negative (MNG) transmission line (TL) to incorporate the zeroth-order resonance (ZOR) into Wi-Fi 7 operation in the 2.4/5/6 GHz wireless local area network (WLAN) bands. The antenna comprises a meta-structured loop with periodically loaded series interdigital capacitors and a parasitic shorted strip, all formed on the same substrate layer in a coplanar structure. The 2.4 and 6 GHz bands are produced by the parasitic strip and the close-form loop strip, respectively, which are of typical right-handed antennas. The 5 GHz band caused by the ZOR mode, where the permeability is zero, can be adjusted by the series capacitance in the unit cell. The total antenna size is 5.4 mm × 19.6 mm only. In this work, the design applied to notebook computers for the upcoming Wi-Fi 7 operation is also demonstrated. Both numerical and experimental results validate our proof-of-concept design.

Citation


Saou-Wen Su and Muhammad Idrees Magray, "Metamaterial-Inspired Notebook Antenna with 2.4/5/6 GHz Wi-Fi 7 Operation," Progress In Electromagnetics Research Letters, Vol. 112, 87-95, 2023.
doi:10.2528/PIERL23061204
http://test.jpier.org/PIERL/pier.php?paper=23061204

References


    1. Federal Communications Commission, "FCC opens 6 GHz band to Wi-Fi and other unlicensed uses,", https://www.fcc.gov/document/fcc-opens-6-ghz-band-wi-fi-and-other-unlicensed-uses-0.

    2. Lee, C. T., C. C. Wan, and S. W. Su, "Multi-laptop-antenna designs for 2.4/5/6 GHz WLAN and 5G NR77/78/79 operation," Proc. Int. Symposium on Antennas and Propagat., 421-422, Osaka, Japan, 2020.

    3. Su, S. W., D. P. Yusuf, and F. H. Chu, "Conjoined, Wi-Fi 6E MIMO antennas for laptops," Proc. Int. Symposium on Antennas and Propagat., 1-2, Taipei, Taiwan, 2021.

    4. Su, S. W. and C. C. Wan, "Asymmetrical, self-isolated laptop antenna in the 2.4/5/6 GHz Wi-Fi 6E bands," Proc. Int. Symposium on Antennas and Propagat., 1-2, Taipei, Taiwan, 2021.

    5. Su, S. W., "Compact, small, chip-inductor-loaded Wi-Fi 6E monopole antenna," Proc. IEEE Int. Symposium on Antennas Propagat., 937-938, Singapore, 2021.

    6. Sim, C. Y. D., et al., "A PIFA design with WLAN and Wi-Fi 6E band for laptop computer applications," Proc. IEEE Int. Symposium on Antennas Propagat., 1808-1809, Denvor, USA, 2022.

    7. Su, S. W., "Miniaturized, Wi-Fi 6E notebook antenna using an in-series chip inductor," IEEE Int. Workshop on Electromagnetics, 168-169, Chiba, Japan, 2022.

    8. Yusuf, D. P., F. H. Chu, and S. W. Su, "Ultra-wideband Wi-Fi 6E/5G NR antenna for laptop applications," Asia-Pacific Microw. Conf., 548-550, Yokohama, Japan, 2022.
    doi:10.1109/LAWP.2022.3202697

    9. Sim, C. Y. D., J. Kulkarni, S. H. Wang, S. Y. Zheng, Z. H. Lin, and S. C. Chen, "Low-profile laptop antenna design for Wi-Fi 6E band," IEEE Antennas Wireless Propagat. Lett., Vol. 22, 79-83, 2023.

    10. Magray, M. I., S. W. Su, and D. P. Yusuf, "Electrically small, conformal Wi-Fi 6E antenna for compact laptop devices," Arabian J. Sci. Eng., 1-7, 2023.
    doi:10.1155/2022/4553924

    11. Su, S. W., P. H. Juan, and F. S. Chang, "Conjoined, two-monopole antenna pair with decoupling inductor for Wi-Fi 6E notebook applications," Int. J. Antennas Propagat., Vol. 22, 1-8, 2022.
    doi:10.2528/PIERL22080402

    12. Su, S. W. and P. H. Juan, "Miniaturized antenna pair for 2.4/5/6 GHz Wi-Fi 6E operation," Progress In Electromagnetics Research Letters, Vol. 107, 39-47, 2022.
    doi:10.1109/LAWP.2023.3281457

    13. Juan, P. H. and S. W. Su, "EMC hybrid loop/monopole LDS antenna with three-sided ground walls for 2.4/5/6 GHz WLAN operation," IEEE Antennas Wireless Propagat. Lett., Vol. 22, 1-5, 2023, early access.
    doi:10.1109/MCOM.001.2000711

    14. Garcia-Rodriguez, A., D. Lopez-Perez, L. Galati-Giordano, and G. Geraci, "IEEE 802.11be: Wi-Fi 7 strikes back," IEEE Comm. Mag., Vol. 21, 102-108, 2021.

    15. Sanada, A., C. Caloz, and T. Itoh, "Novel zeroth-order resonance in composite right/left-handed transmission line resonators," Asia-Pacific Microw. Conf., 1588-1591, Seoul, South Korea, 2003.

    16. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley, 2006.
    doi:10.1109/TAP.2007.891845

    17. Lai, A., K. M. K. H. Leong, and T. Itoh, "Infinite wavelength resonant antennas with monopolar radiation pattern based on periodic structures," IEEE Trans. Antennas Propagat., Vol. 55, 868-876, 2007.
    doi:10.1109/TAP.2007.910505

    18. Park, J.-H., Y.-H. Ryu, J.-G. Lee, and J.-H. Lee, "Epsilon negative zeroth-order resonator antenna," IEEE Trans. Antennas Propagat., Vol. 55, 3710-3712, 2007.
    doi:10.1109/TAP.2010.2046832

    19. Park, J.-H., Y.-H. Ryu, and J.-H. Lee, "Mu-zero resonance antenna," IEEE Trans. Antennas Propagat., Vol. 58, 1865-1875, 2010.
    doi:10.1109/TAP.2012.2194643

    20. Wei, K., Z. Zhang, Z. Feng, and M. F. Iskander, "A MNG-TL loop antenna array with horizontally polarized omnidirectional patterns," IEEE Trans. Antennas Propagat., Vol. 60, 2702-2710, 2012.
    doi:10.1109/TAP.2013.2241717

    21. Wei, K., Z. Zhang, Z. Feng, and M. F. Iskander, "A wideband MNG-TL dipole antenna with stable radiation patterns," IEEE Trans. Antennas Propagat., Vol. 61, 2418-2424, 2013.
    doi:10.1109/ACCESS.2020.3013698

    22. Alibakhshikenari, M., et al., "A comprehensive survey of ``metamaterial transmission-line based antennas design challenges and applications"," IEEE Access, Vol. 8, 144778-144808, 2020.
    doi:10.1109/MAP.2022.3201194

    23. Zhang, J., S. Yan, and G. A. E. Vandenbosh, "Composite right/left-handed transmission line metamaterial-inspired small antenna design: Topologies, reconfigurability, and applications," IEEE Antennas Propagat. Mag., Vol. 65, 71-78, 2023.

    24. Bertin, G., B. Piovano, and R. Vallauri, "Metamaterial-inspired antennas for telecommunication applications," European Conf. Antennas Propagat. (EuCAP), 1-2, Prague, Czech Republic, 2012.

    25. Suhas, D. and S. Bhattacharyya, "Compact dual-band CRLH metamaterial planar antenna in laptops for WLAN/WiMAX frequencies," IEEE Microw. Antennas Propagat. Conf. (MAPCON), 1037-1042, Bangalore, India, 2022.

    26. Ansys HFSS, Ansys Inc., , http://www.ansys.com/Products/Electronics/ANSYS-FSS.

    27. SG 24-S, MVG, , https://www.mvg-world.com/en/products/antenna-measurement/multi-probe-systems/sg-24.

    28. Balanis, C. A., Antenna Theory: Analysis and Design, Wiley, 2016.