Vol. 113

Latest Volume
All Volumes
All Issues

A Scalable Psp RF Model for 0.11 um MOSFETs

By Xiaonian Liu and Yansen Liu
Progress In Electromagnetics Research Letters, Vol. 113, 43-51, 2023


An accurate, efficient and scalable SPICE model is essential for modern integrated circuits design, especially for radio frequency (RF) circuit design. A PSP based scalable RF model is extracted and verified in 0.11 μm CMOS manufacturing process. The S parameter measurement system and open-short de-embedding technique is applied. The macro-model equivalent subcircuit and parameters extraction strategy are discussed. The extracted model can match the de-embedded S parameters data well. By combining the model parameters' dependencies on each geometry quantity, the scalable expression of parameters with all geometry quantities included can be obtained. This work can be a reference for the RF MOSFETs modeling and RF circuit design.


Xiaonian Liu and Yansen Liu, "A Scalable Psp RF Model for 0.11 um MOSFETs ," Progress In Electromagnetics Research Letters, Vol. 113, 43-51, 2023.


    1. Laurance, W. N., "SPICE2: A computer program to simulate semiconductor circuits," Memorandum No. UCB/ERL M520, 1975.

    2. Quarles, T. L., "Spice3 version 3C1 users guide," Memorandum No. UCB/ERL M89/46, 1989.

    3. Morabito, F. C., "Independent component analysis and feature extraction techniques for NDT data," Materials Evaluation, Vol. 58, No. 1, 85-92, 2000.

    4. Koolen, M. C. A. M., J. A. M. Geelen, and M. P. J. G. Versleijen, "An improved de-embedding technique for on-wafer high-frequency characterization," Proceedings of the 1991 Bipolar Circuits and Technology Meeting, 188-191, Minneapolis, MN, USA, 1991.

    5. Chen, C.-H. and M. J. Deen, "A general noise and S-parameter deembedding procedure for onwafer high-frequency noise measurements of MOSFETs," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 5, 1004-1005, May 2001.

    5. Cho, H. and D. E. Burk, "A three-step method for the de-embedding of high-frequency S-parameter measurements," IEEE Transactions on Electron Devices, Vol. 38, No. 6, 1371-1375, June 1991.

    7. Gildenblat, G., X. Li, W. Wu, H. Wang, A. Jha, R. van Langevelde, G. D. J. Smit, A. J. Scholten, and D. B. M. Klaassen, "PSP: An advanced surface-potential-based MOSFET model for circuit simulation," IEEE Transactions on Electron Devices, Vol. 53, No. 9, September 2006.

    8. Scholten, A. J., G. D. J. Smit, B. A. De Vries, L. F. Tiemeijer, J. A. Croon, D. B. M. Klaassen, R. van Langevelde, X. Li, and W. Wu, "(Invited) The new CMC standard compact MOS model PSP: Advantages for RF applications," 2008 IEEE Radio Frequency Integrated Circuits Symposium, 247-250, Atlanta, GA, USA, 2008.

    9. Chauhan, Y. S., S. Venugopalan, M.-A. Chalkiadaki, M. A. Ul Karim, H. Agarwal, S. Khandelwal, N. Paydavosi, J. P. Duarte, C. C. Enz, A. M. Niknejad, and C. Hu, "BSIM6: Analog and RF compact model for bulk MOSFET," IEEE Transactions on Electron Devices, Vol. 61, No. 2, 234-244, February 2014.

    10. Enz, C. C. and E. A. Vittoz, Charge-based MOS Transistor Modeling: The EKV Model for Low-power and RF IC Design, John Wiley & Sons, Ltd, West Sussex, England, 2006.

    11. Lovelace, D., J. Costa, and N. Camilleri, "Extracting small-signal model parameters of silicon MOSFET transistors," 1994 IEEE MTT-S International Microwave Symposium Digest, Vol. 2, 865-868, 1994.